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Abstract
The integrability of the discrete Painlevé I equation (dP-I) is reviewed and its
integrability studied. We establish the existence of a conserved quantity which
is algebraic in the case of the autonomous dP-I equation and it is argued that the
non-autonomous dP-I map has a non-algebraic invariant. Our analysis leads to,
among other results the construction of asymptotic solutions with interesting
structures.

PACS numbers: 0230, 0520, 0545

1. Introduction

Discrete nonlinear mappings have gained renewed interest in recent years, first as discretized
versions of their continuous counterparts [5, 7, 22], and second as by-products of infinite
discrete symmetries in two-dimensional statistical mechanics models [5,22]. This equation has
appeared in two-dimensional quantum gravity [10], in the theory of orthogonal polynomials
[24], as well as in the problem of counting graphs drawn on a Riemann surface [4]. They
may also be considered as dynamical systems evolving in discrete time. But as discrete
nonlinear equations, the question of their integrability is as central as in continuous nonlinear
equations.

In this work we address ourselves to one particular class of these nonlinear mappings: the
class of discrete Painlevé-1 mapping described by the dP-I equation. Of course it is known
that several discretizations of the Painlevé-1 equation exist [7]. Here we shall consider the
following canonical form of the dP-I equation:

xn+1 + xn + xn−1 = b +
cn

xn
(1.1)

which has appeared in many research topics. This is the simplest form of all the discrete
Painlevé equations. It has been treated recently by many authors since it is known to be
integrable [10]: it has a Lax pair and is solvable by the isomonodromic method. However, no
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explicit form of the solution exists and the isomonodromic method yields only an asymptotic
form.

The problem of integrability was tackled about a decade ago by Grammaticos and co-
workers [11–13]. To decide whether or not a discrete nonlinear equation is integrable they
proposed the criterion of singularity confinement as an extension of the Painlevé test, used
in continuous nonlinear equations. This test means that if the discrete nonlinear equation
is integrable, iteration of the related mappings will eventually become free of singularities.
However, shortly after, it was discovered by Hietarinta and Viallet that some mappings do
pass the singularity confinement test but still exhibit chaotic behaviour. These authors have
extended their analysis to complex projective space [9,14,15], and come to the conclusion that
one should rather pay attention to the growth of the complexity of the iterated maps, which is
described by the ‘degree’ of the factorized part of iterated maps.

So they are led to define the concept of algebraic entropy of a birational map [3]. Such a
map is certainly not integrable if its algebraic entropy is not zero. But one can only conjecture
that a map with zero algebraic entropy can be integrable. Hietarinta and Viallet working
in a complex projective representation of discrete nonlinear maps have found strengthening
arguments in favour of the algebraic entropy criterion. But recently Ohta et al [20] have shown
that for the dP-I map the two tests are really equivalent. For the sake of completeness let us
mention that Ablowitz et al [1] have attempted to generalize the Painlevé test for nonlinear
difference equations (as opposed to discrete nonlinear equations).

Amid this intense research activity on the integrability of the dP-I equation, little attention
has been devoted to knowledge of the form of the solution except in [19].

The aim of this paper is to look at the integrability of the dP-I mapping under an
alternative point of view concentrated on the existence of an invariant manifold which turns
out to be, as we shall see non-algebraic. A by-product of this investigation is the explicit
form of an asymptotic solution. The paper is organized as follows. In section 2, we
review the concept of algebraic entropy introduced by Hietarinta and Viallet and discuss
some of its consequences; we also give some examples of computation of algebraic entropy.
Section 3 is devoted to the structure of the autonomous dP-I mapping. This case is exactly
integrable in terms of elliptic functions and has an algebraic invariant. We give the explicit
parametrization in terms of Weierstrass elliptic functions and determine the periodic points of
this invariant.

In section 4, we study the non-autonomous dP-I mapping as multiplicatively perturbed
autonomous dP-I mapping, using the method of singularity confinement to calculate its
algebraic entropy. We construct perturbatively an invariant formal series which converges
locally and we show that it is not a sufficient condition which goes over a global one.

Section 5 treats the non-autonomous dP-I mapping directly. We analyse the difficulties of
determining its invariant and give arguments as to why this invariant should be non-algebraic.
This section is essential for the understanding of the integrability of the non-autonomous dP-
I equation. What characterizes, in fact, the integrability is the conservation of areas upon
going to infinity. We will show that this example is at the borderline of applicability of the
KAM theorem, but may serve to extend the hypothesis of the KAM theorem to birational
transformations in two variables, which upon regularization conserve areas. Finally, section 6
gives the explicit construction of the asymptotic solution, i.e. at large discrete time; this solution
displays some characteristic features which may be attributed to integrability. We compare its
properties with those obtained by others, in particular by Joshi [18, 19].
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2. Algebraic entropy

2.1. Some useful topics of algebraic geometry

In this section, we recall some useful definitions and give some usual mathematical notation
in algebraic geometry [23]. We will focus on the main notions necessary for the theoretical
development of singularity confinement. Set K for any of the number fields (R) or (C). We
call K-affine space of dimension n, denoted by K

n the set of points

K
n = {(x1, x2, . . . , xn) | xi ∈ K}. (2.1)

In this context, the relevant sets in algebraic geometry are defined as the zeros of polynomials.
In fact, if we consider I as an ideal of the polynomial ring K[X1, . . . , Xn], the algebraic set
generated by the ideal I is

V (I) = {(x1, x2, . . . , xn) ∈ K
n |P(x1, . . . , xn) = 0, P ∈ I}. (2.2)

As closed sets, they allow one to define a topology called the topology of Zariski. We give the
verification of the axioms and some characteristics of this topology in appendix A.1. Among
these sets, some play a particular role: the irreducible sets. A set Y of a topological space
X is called irreducible if Y = U ∩ V , or U and V are closed sets, then X = U or Y = V .
To this geometric notion one can associate an algebraic equivalent notion: the quotient ring
�(V ] = K[X1, . . . , Xn]/I is integral3.

Another class of spaces play a dominant role in algebraic geometry: these are the projective
spacesPn

K. Locally isomorphic to affine spaces, and completed at infinity by a set isomorphic
to Pn−1

K, they are defined as the quotient space K
n \ R, where R denotes the following

equivalence relation: (x0, . . . , xn)R(y0, . . . , yn) if there exists λ 	= 0 such that ∀i = 0, . . . , n,
xi = λyi . An element of this equivalence class will be denoted by: x̄ = (x0 : . . . : xn).
Zaraski topology is obtained by passage to the quotient. Thus algebraic projective sets are
generated by zeros of homogeneous polynomials of K[X0, . . . , Xn]. Now consider the open
set Ui complementary to the hyperplane at infinity xi 	= 0 and the mapping

φi

{
Ui ⊂ PK

n −→ K
n

[x1, . . . , xi, . . . , xn] �−→ [x1/xi, . . . , xi−1/xi, xi+1/xi, . . . , xn/xi].
(2.3)

This is really an isomorphism since the inverse mapping is given by

(x1, . . . , xi−1, xi+1, . . . , xn) �−→ (x0 : . . . : xi−1 : 1 : xi+1 : . . . : xn). (2.4)

We refer the reader to appendix A.2 for morphisms between algebraic varieties (irreducible
sets). Here we are interested in the main morphism of this paper: the blow-up morphism.
Consider the product of projective spaces Pn

K × Pn−1
K and the closed subspace

∏
defined

by the system of equations xiyj = xjyi , ∀i = 1, . . . , n. Let ξ = (1 : 0 : . . . : 0) and call the
first component projection σ . Thus for any Q such that Q = (x0 : . . . : xn) 	= ξ in Pn

K, there
exists a unique forerunner in

∏
which is σ−1(x0 : . . . : xn) = (x0 : . . . : xn; x1 : . . . : xn).

But if Q = ξ the pre-image of this point is the product ξ × Pn−1
K. Consequently, σ−1 is a

blow-up centred at ξ and is a regular isomorphism of Pn
K \ ξ −→ ∏ \ξ × Pn−1

K. Using
local variables, one can define this blow-up mapping anywhere else.

Let us examine what happens in the neighbourhood of ξ . Consider the straight line L

of Pn
K going through ξ and given by the equations xj = αjxi , ∀j 	= i. We see that, with

αi = 1 at the i th place, σ−1 ((x0 : . . . : xn) ∈ L) = (x0 : . . . : xn;α1 : . . . : 1 : . . . : αn), σ−1

3 A ring A is integral if ∀(a, b) ∈ A2, ab = 0 then a = 0 or b = 0.
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Figure 1. Illustration of the blow-up σ−1 of the point ξ and the respective images of some lines
lying through the point ξ .

is a regular mapping onto L, it sends L to a curve in
∏

which meets ξ × Pn−1
K at the point

(ξ ;α1 : . . . : 1 : . . . : αn) (see figure 1). Thus σ−1(n) is not regular at ξ since its value depends
on the direction with which one tends to ξ . This remark is of crucial importance since it is at
the basis of the concept of singularity confinement.

There exists an integer m such that, given any rational mapping F of C
n, this

transformation, once embedded in PC
m may be expressed in terms of homogeneous

polynomials of the same order. The degree of this mapping F , denoted by deg(F ) is the
order of this polynomial. Hence, we have the property that given two mappings φ1 and φ2,
one has

deg(φ1 ◦ φ2) � deg(φ1) + deg(φ2) (2.5)

(φ1, φ2) ∈ PC
m[x1, . . . , xn+1]. This remark allows us to define an inner composition law ×

such that ∀(φ1, φ2) ∈ C
m+1[x1, . . . , xn+1]:

φ1 ◦ φ2 = m[φ1, φ2](φ1 × φ2) (2.6)

where m[φ1, φ2] is a homogenous polynomial common to each component of φ1 × φ2. Let
φ[n] be the n-fold product: φ[n] = φ × · · · × φ︸ ︷︷ ︸

n times

and one sets dn = deg(φ[n]). The algebraic

entropy of the mapping φ, hal(φ) is defined as the limit

hal(φ) = lim
n→∞

1

n
ln dn. (2.7)

One has automatically hal(φ1 ◦φ2) � hal(φ1)+hal(φ2) and hal is a birational invariant. Surely
enough, let ψ be a birational transformation and let φ′ = ψ−1 ◦ φ ◦ ψ .

Then we have dn(φ) � dn(φ
′) = deg(ψ−1 ◦ φ[n] ◦ ψ) � deg(ψ)2dn(φ). By taking this

expression and going to the limit n →∞, we establish the result

hal(φ
′) = hal(φ).

The algebraic entropy can have intuitive interpretations. For instance, the interpretation
of Arnol’d is as follows: consider a straight line, its successive transforms will intersect an
arbitrary line a number of times, and this number is equal to hal . It is the so-called Arnol’d
complexity [2].
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2.2. Factorization scheme

Singular points of birational transformation in projective space PC
n are straight lines of C

n+1

which are mapped to the origin [0, . . . , 0]. An algebraic geometry theorem shows that this set is
of codimension at least equal to two. Let φ be a birational transformation, φh its homogenized
version in PC

m and ψh its homogeneous inverse defined by ψ ◦φ = KψId and φ ◦ψ = KφId,
where Kψ and Kφ are polynomials of degree deg(φh) · deg(ψh)− 1. The zeros of Kφ form an
algebraic set Z(Kφ); they play an important role in the understanding of the factorization of
φ[n]. Viallet and Bellon [3] in their paper Algebraic entropy have proved that for any birational
mapping φ2 of PC

n, such that φ1 ◦φ2 = m(φ1, φ2)(φ1 ×φ2), m(φ1, φ2) is a product of certain
factors of Kφ1 and Kφ2 . Applying this property to φ2 = φ

[n]
1 we conclude that only factors of

Kφ1 can factorize!
As an example [3] let us consider the Hénon transformation. This mapping of C

2 has no
singularity, embedded in the projective space PC

2:

H :




PC
2 −→ PC

2


x

y

t


 �−→




t2 + ty − ax2

bxt

t2


 (2.8)

where a and b are parameters. Here KH = 1. Thus H has no singularities. Consequently,
the iterated transforms cannot have arbitrary factorizations dn(H) = 2n ⇒ hal(H) = ln(2).
We can easily generalize this result to all polynomial transformations for which the algebraic
entropy reaches its maximum value, equal to deg(H).

2.3. Geometric interpretation

Let us consider the successive iterations of φ:

φ ◦ φ = φ × φ = φ[2]

φ ◦ φ[2] = φ × φ[2] = φ[3]

...

φ ◦ φ[k−1] = φ × φ[k−1] = φ[k]

φ ◦ φ[k] = Mφφ × φ[k]

(2.9)

such that the first factorization occurs at the (k + 1)th iteration, Mφ is a product of factors of
Kφ . The last equation means that the set Z(Mφ) is mapped onto a manifold with codimension
>1 by φ. If this codimension turns out to be one, we say that we have a process of
singularity confinement [14, 15]. This corresponds to the maximal factorization. Otherwise
this codimension is larger than one. We shall illustrate these two cases by some examples, in
particular by the discrete Painlevé transformation.

2.4. Conjecture

It can be easily proved that singularities of birational transformations give rise to factorizations
and consequently lower the value of algebraic entropy. In some extreme cases, we may even
have a polynomial growth of degrees of the iterated homogenous transformations, i.e. hal = 0.
This suggests the following conjecture: If φ is a birational mapping such that its algebraic
entropy hal(φ) is equal to zero then φ has an invariant which is not necessarily an algebraic
invariant.
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2.5. An example of computation of algebraic entropy

Let us consider a birational transformation φ which admits {x = 0} as a singular manifold:

φ :




C
2 −→ C

2[
x

y

]
�−→


 y +

a

xm

x


 (2.10)

where m ∈ N\{0} and a 	= 0 is a parameter. For a = 0, φ is simply a permutation. Embedded
in PC

2, φ gives φh:

φh :




PC
2 −→ PC

2


x

y

t


 �−→




yxm + atm+1

xm+1

xmt


. (2.11)

The homogenous inverse is

φh :




PC
2 −→ PC

2


x

y

t


 �−→




ym+1

xym − atm+1

ymt


 (2.12)

such that φh ◦ φ−1
h = y2(m+1)−1

Id and φ−1
h ◦ φh = x2(m+1)−1

Id. Thus the transformations
φ ◦ φ[n] will only give factors which are powers of x. Let us now analyse the singularities
in projective space near the line [0, u, 1], u ∈ C, i.e. on lines such as [ε, u, 1] where ε is
small. Obviously, the line [0, u, 1] is mapped by φ3 onto [0, 0, 0]. However, in PC

2 we
have 


ε

u

1


 −→

φh




a + uεm

εm+1

εm


 −→

φh




amεm+1 + o(εm+1)

am+1 + o(ε)

amεm + o(εm)




=




εm+1 + o(εm+1)

a + o(ε)

εm + o(εm)


 −→

φh




2a + o(ε)

εm + o(εm+1)

εm + o(εm+1)


. (2.13)

Going to the limit ε → 0, by continuity of φ[3]
h in PC

2 we have φ
[3]
h [0, u, 1] = [1, 0, 0].

Thus the factorization of εm(m+1) of φ[3]
h has regularized partially the singularity since we obtain

at the end, a manifold of codimension two: here this is a point, different from [0, 0, 0]. This
illustrates the case for which incomplete regularization occurs: it does not turn out to be a line.
We obtain the following factorization scheme:

φ ◦ φ = φ[2]

φ ◦ φ[2] = xm(m+1)φ × φ[2] = xm(m+1)φ[3].
(2.14)

The following diagram shows that the confinement of singularities are only partial, since
φ

[3]
h [0, 0, 1] is mapped onto a point of period 2. The straight line [0, u, 1], u ∈ C is blown

down to the point • which in turn is mapped to the point [0, 0, 0] by φh and back to •.
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Figure 2. Illustration of the factorization scheme of φ.

Let us now compute the algebraic entropy. We have φ[2]∗(x) = xm+1x[2], which means
that the first component of φ[2] factorizes xm+1. But if one applies φ[2]∗(x) to φ∗(x) then
the factorization occurs: x[1]m+1

and consequently: φ[n]∗(x) = x[n−2]m+1
x[n]. Recall that

gn = deg(x[n]) and dn = deg(φ[n]), and the previous arguments translate into

dn = gm+1
n−2 + gn. (2.15)

Making one more factorization step

φ ◦ φ[2] = xm(m+1)φ[3]

...

φ ◦ φ[n] = x[n−2]m(m+1)
φ[n+1]

(2.16)

we have dn deg(φ) = m(m + 1)gn−2 + dn+1 and deg(φ) = m + 1. Hence we have the system

dn+1 = (m + 1)(dn −mgn−2)

dn = (m + 1)gn−2 + gn

from which one extracts gn+2 = (m + 1)(−gn+1 + gn − gn−1). This linear recursion relation
may be solved by using a generating function: g(z) = ∑

n�0 gnz
n, and one finds for any m,

an irreducible rational function:

g(z) = 1 − z2(m2 − 1)

1 − (m + 1)(z3 − z2 + z)
. (2.17)

Some calculations show that hal = − ln |λ|, where λ is the root of the denominator of g which
has the smallest modulus, note that 1/ deg(φ) � |λ| � 1 which implies that hal = (φ) � 0.
For this example, the denominator is a polynomial of the order of three, having at least one
root with modulus smaller that 1, implying that hal > 0. For m = 1, φ is trivially integrable.
Indeed, setting U = xy and V = y, we have φ∗(U) = U + a and φ∗(V ) = U/V . This trivial
but appropriate change of variables will decouple the system:

Un ≡ φ[n]∗(U) = U0 + na (2.18)

Vn ≡ φ[n]∗(V ) =




Un−1Un−3 . . . U1

Un−2Un−4 . . . U0

V0

1
n even

Un−1Un−3 . . . U0

Un−2Un−4 . . . U1

1

V0
n odd.

(2.19)
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By considering φ2, we have without loss of generality:

Vn =
�
(
U0
2a

)
�
(

3
2 + U0

2a

) � (
n + 1

2 + U0
2a

)
�
(
n− 1 + U0

2a

) . (2.20)

And substituting n by Un−U0
a

, we obtain

Vn =
�
(
U0
2a

)
�
(

3
2 + U0

2a

) � (
Un

a
− U0

2a + 1
2

)
�
(
Un

a
− U0

2a + 1
)V0. (2.21)

The following quantity F is a conserved quantity:

F(x, y, x0, y0) = x + x0 −
�
(
y0

2a

)
�
(

3
2 + y0

2a

) � (
y

a
− y0

2a + 1
2

)
�
(
y

a
− y0

2a + 1
) . (2.22)

And it is obviously a non-algebraic invariant; furthermore, this is the minimal one by
construction. The previous computation shows clearly its limitations, one gets only an upper
bound for the algebraic entropy. In this case there only exists a partial confinement of the
singularity. Consequently, there could still be additional factorizations which markedly affect
the value of the algebraic entropy. Here in this example, the root of smallest modulus is equal
to 0.64, yielding hal � 0.43 and from the previous considerations one should have hal = 0.

Moreover, the analysis of singularities is only efficient in the case of an irreducible
manifold. For generic cases, this method only provides a rough estimate, since irreducible
manifolds mix themselves in the singularity confinement analysis.

3. The discrete Painlevé I transformation

This is a transformation for which there is a complete regularization of the singularities. Let
σN be a cyclic mapping of C

N of the order of N perturbed uniquely by the addition of a pole
1
x

. We shall see why the discrete Painlevé I transformation plays an important role within this
class of transforms.

σN :




C
N −→ C

N




x1

x2

...

xN−1

xN



�−→




x2 +
a1

x1

x3 +
a3

x1

...

xN +
aN

x1

x1




(3.1)

or embedded in the projective space:

σh
N :




PC
N −→ PC

N


xi

xN

t


 �−→




xi+1x1 + ait
2

x2
1

x1t


 (3.2)

for 1 � i < N − 1.
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Only powers of x1 can be factorized from iteration of σh
N . Finally, (σ h

N)
N is the smallest

power of σN which maps the manifold of codimension one (σ h
N)

N ([0, u1, . . . , uN ]) onto
[0, . . . , 0]. Let us consider the neighbourhood of this hyperplane. Then we have the sequence
of iterations of σh

N :


ε

u2

...

uN−3

uN−2

uN−1

uN



�−→




a1 + εu2

a2 + εu3

...

uN−2 + εuN−1

uN−1 + εuN

ε2

ε



�−→




a2 + εP1

a3 + εP2

...

uN−1 + εPN−1

ε2

(
1 +

aN−1

a1

)
a1 + εPN

ε + ε2PN+1



. . .

�−→




ε2(1 + D) + ε3P1

a1 + εP2

...

aN−3 + εPN−3

aN−2 + εPN−2

aN−1 + εPN

ε + ε2PN+1



�−→




ε2a1(1 + D) + ε3P1

ε2a3(1 + D) + ε3P2

...

ε2aN−2(1 + D) + ε3PN−2

ε2aN−1(1 + D) + ε3PN−1

ε4D2 + ε5PN

ε2D + ε4PN+1




(3.3)

with

D = aN−1

a1
+ · · · +

a2

aN−2
+

a1

aN−1

ai 	= 0 andPi are generic polynomials in ε, 1 � i � N−1. We note that a unique factorization
of ε2 can occur such that the system stays partially regularized. Following the same procedure
as before, gn = deg(x[n]) and dn = deg(σ [n]), we may establish the equations, for N � 1:

dn = gn + 2gn−N

dn+1 = 2dn − 2gn−N

(3.4)

and derive the recursive relation for gn:

gn − 2gn−1 + 2gn−N − 2gn−N−1 = 0. (3.5)

One may show that the generating function of the gn: g(z) = ∑
n∈N

gnz
n is, for a given N � 1:

g(z) = 1

1 − 2z + 2zN − 2zN+1
. (3.6)

The smallest root of this polynomial has a linear approximation, in a neighbourhood of
z0 = 1

2 : z � z0 +
(
z0
2

)N+1
. Hence for a transformation of large order, the regularization is

clearly insufficient and

hal(σN) −−−→
N→∞

ln(deg(σN)). (3.7)

One could also discuss the case with ai = 0, 1 � i < N − 1. This leads to a smallest
algebraic entropy since the factorization of ε2 occurs earlier. Another interesting case is the
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one for which D = −1. There still exists an additional factorization, corresponding to the
self-regularization of the system; this means that we recover a manifold of codimension one
after N + 1 iterations, and end up with the equation

gn − 2gn+1−1 + 2gn+N − gn+N+1 = 0 (3.8)

for which the generating function is

g(z) = zN − 1

1 − 2z + 2zN − zN+1
. (3.9)

So for N = 3,

g(z) = − 1 + z + z2

(1 + z)(1 − z)2

hence hal(σ
3) = 0. For generic N > 3 the solution is expanded to first order and there exists

a root z0 of modulus smaller than 1: z0 � 1− 2/N . Thus hal(σN)N>3 > 0. This shows that if
the blow up does not occur sufficiently earlier, factorizations cannot lower the growth rate to
zero, according to the dimension of the space. The discrete Painlevé transformation (N = 3
and D = 1) appears to be the only one to admit a zero algebraic entropy. It may be formulated
as a two-variable transformation:

σ3 :




C
3 −→ C

3




x

y

z


 �−→




y +
a

x

z +
b

x

x




(3.10)

with D = 1 + a
b

+ b
a

and the equation D = −1 determines a manifold of parameters with
maximum factorizations: a + b = 0. Thus in the invariant plane {x + y + z = constant}. This
yields a family of transformations depending on two parameters (b, c) ∈ C

2:

2 :




C
2 −→ C

2[
x

y

]
�−→


 −x − y + b +

c

x

x


. (3.11)

There exists a non-autonomous version of this transformation which is called the discrete
Painlevé I transformation:

2n :




C
2 −→ C

2[
x

y

]
�−→


 −x − y + b +

cn

x

x


 (3.12)

where cn = α + βn + (−1)nγ with α, β and γ being constants. This result comes from the
demand that the system be self-regularized after the fourth iteration which forces cn to fulfil
the relation [14]

cn+1 − cn = cn−1 − cn−2. (3.13)
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3.1. The elliptic parametrization of the autonomous discrete Painlevé I transformation

As we have just seen, this transformation is obtained by perturbation of a cyclic transformation
by adding poles in one variable. Hence we impose the resolution of singularities which gives a
zero algebraic entropy. This property leads to the existence of an algebraic invariant (conserved)
quantity:

5 :

{
C

2 −→ C

(x, y) �−→ (x + y − b)(xy − c).
(3.14)

2 has numerous properties. It preserves areas and orientation since det(J20) = 1. As a
two-variable transformation, this symplectic mapping is a birational one such that the inverse
is conjugate to the original transformation by an involution: I : (x, y) �−→ (y, x). On the
elliptic curves 5(x, y) = constant which fill up the space by foliations, the transformation is
simply a translation in the uniformizing variable. In fact, 5 may be viewed as the first integral
of a Hamiltonian transformation.

Here we consider the dP-I, written in a recursive way:

xn+1 = −xn − yn + b +
3c

xn

yn+1 = xn

(3.15)

where n is an integer. This mapping has a known invariant given by

(xn + yn − b)(xnyn − 3c) = e (3.16)

where e depend on the initial condition e = (x0 + y0 − b)(x0y0 − 3c), b and c are the
real parameters of the transformation. We show now that a complete parametrization of
this algebraic curve of third order may be obtained in terms of Weierstrass elliptic functions
P(z; g2, g3) and P ′(z; g2, g3) [4].

3.1.1. Parametrization. Introducing a parameter t through the relations

(x + y − b) = e

t

(xy − 3c) = t

(3.17)

we establish the following representation of x and y in terms of elliptic Weierstrass functions:

x(ξ) = 1

2

(
b +

P ′(v; g2, g3)− P ′(ξ ; g2, g3)

P(v; g2, g3)− P(ξ ; g2, g3)

)

y(ξ) = 1

2

(
b +

P ′(v; g2, g3) + P ′(ξ ; g2, g3)

P(v; g2, g3)− P(ξ ; g2, g3)

) (3.18)

where ξ , g2 and g3 are given in appendix B. The dP-I mapping is now represented by a simple
addition ξ �→ ξ + v, where v fulfils the relations

P(v; g2, g3) = 1
12b

2 − c

P ′(v; g2, g3) = e.
(3.19)
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3.2. The periodic points of the autonomous dP-I

As announced, the transformation is a left product:

5 :

{
C

2 −→ C

(5, θ) �−→ (5, θ + τ(5))
(3.20)

with τ(5) determined by the equation P(τ (5), g2, g3) = −z/3. In this formulation and
restricted to R, the Hamiltonian may be simply expressed as [21]

H(5) =
∫ 5

0
τ(u) du. (3.21)

A more explicit expression of H(5) is difficult to obtain because of the difficulty in inverting
the elliptic Weierstrass function. Periodic points are points resulting from the congruency of
the shift τ with the periods of elliptic curves ω1 and ω2. The values of ω1 and ω2 may be
obtained [17]

ω1 = 1

12
√

2(1 − e2)

[
7F

(− 1
6 ,

7
6 , 2, e2

)
+ 5(1 − 2e2)F

(
1
6 ,

7
6 , 2, e2

)]
ω2 = 1

12
√

2(1 − e2)

[
5F

(
1
6 ,

7
6 , 2, e2

)
+ 7(1 − 2e2)F

(− 1
6 ,

7
6 , 2, e2

)] (3.22)

with

e = 5

4 z
3

√
z
3

and F is the usual hypergeometric function, and the appearance of e is only due to the
homogeneity property of the Weierstrassian functions. A point Q of the elliptic curve is a
N -periodic point: 2(N)(Q) = Q if and only if

Nτ(5(Q)) ≡ 0 mod(ω1, ω2). (3.23)

Using addition formulae for the Weierstrass functions, we conclude that if a point Q is N -
periodic then all the curves to which it belongs are made of N -periodic points. Thus the
conditions 2(N)(x, y) may factorize polynomials of this kind:

dN∏
i=1

[
5(x, y)− a

[N ]
i

]
(3.24)

where {5(x, y) = a
[N ]
i }, i = 1, . . . , dN are N -periodic manifolds, and dn does increase in a

polynomial way since hal(2) = 0. a[N ]
i are solutions of polynomials whose degrees increases

in a polynomial way with N since they are determined by the equations P(τ, g2, g2) = 0 or
P ′(τ, g2, g2) = 0. Using additional relations of the Weierstrass function [8] we conclude that
the number of periodic manifolds is denumerable.

4. Multiplicative perturbation of the dP-I transformation

Let φλ be the birational transformation

φλ :




R
3 −→ R

3


x

y

z


 �−→



−x − y + z/x

x

λz


. (4.1)
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Its inverse is

φ−1
λ :




R
3 −→ R

3




x

y

z


 �−→



−x − y +

z

λx

x

z

λ


. (4.2)

As we have seen, generically, this transformation does not self-regularize, except for
discrete values of λ. Here we seek to establish the existence of an invariant by perturbative
construction from a known transformation. This turns out to be a perturbation of the order of
three in two variables.

4.1. Algebraic entropy by singularity confinement analysis

Consider the mapping Fn:

Fn :




R
3 −→ R

3


x

y

t


 �−→



−x2 − xy + cnt

2

x2

xt


. (4.3)

By a singularity confinement analysis, we obtain the graph, for the line [ε, u, 1] close to the
singular line [0, u, 1].

We now show that self-regularization occurs if, ∀(n, k) ∈ N/{0}:
(c3n+k − c3n+k−1 − c3n+k−2) + · · · + (c3 + k − c2 + k − c1 + k + ck) = 0 (4.4)

and only F3n ◦ F3n−1 ◦ F3n−2 will self-regularize. Suppose that the regularization has not yet
occurred, so the image of the line [ε, u, 1] after the 3(n− 1)th iteration, in powers of ε, is


x

y

t


 −−−−−−−−→

F3n−3◦···◦F1◦F0




Mn + εQ1(u, ε)

ε2Nn + ε3Q2(u, ε)

εPn + ε2Q3(u, ε)


 (4.5)

Figure 3. Factorization scheme of Fn.



3228 M Bernardo et al

whereQ1,Q2 andQ3 are generic polynomials in (u, ε); and it gives, throughF3n◦F3n−1◦F3n−2

(see figure 3): 

−M6

nε
2[−MnNn + (C3n+1 + C3n+2 − C3n+3)P

2
n ] + o(ε2)

M4
nε

4[−MnNn + C3n+1P
2
n−1 + C3n+2P

2
n ]2 + o(ε4)

M5
nPnε

3[−MnNn + (C3n+1 + C3n+2)P
2
n ] + o(ε3)


 (4.6)

with

C0 = −c0

C1 = −c0 + c1

C2 = −c0 + c1 + c2

C3 = −c0 + c1 + c2 − c3

C4 = −c0 + c1 + c2 − c3 + c4 . . . .

(4.7)

One shows by recursion that

Mn = −C2
0 . . . C

2
3(n−2)C3(n−1)

Nn = C2
2 . . . C

2
2+3k . . . C

2
2+3(n−2)

Pn = −C0 · C2C3 . . . C2+3kC3+3k . . . C2+3(n−3)C3+3(n−3) · C2+3(n−2).

(4.8)

Note that MnNn = −P 2
n C3(n−1), such that there can be only regularization at the (3n + 1)th

step of the iteration, for n ∈ N: C3n = 0. Thus, in our case Cn = λnz0, this would imply that

(λ3 − λ2 − λ)

n∑
k=0

λ3k + 1 = 0. (4.9)

Let us now evaluate the algebraic entropy for an arbitrary value of λ, i.e. in the case where no
regularization occurs. It is easy to obtain the system of equations on the degree of the iterates
as in [2], ∀n � 4:

dn+1 = 2dn − 2gn−3

dn = gn + 2gn−3.
(4.10)

One obtains the recursion relation

gn+4 − 2gn+3 + 2gn+1 − 2gn = 0. (4.11)

The generating function g(z) has a denominator equal to −2z4 + 2z3 − 2z + 1. The value of
the algebraic entropy is hal(φλ) = − ln z0, where z0 is the smallest root of this polynomial:
numerically z0 = 0.582.

In the case where the regularization occurs at m = 3n + 1 step, i.e.

(λ3 − λ2 − λ)

n∑
k=0

λ3k = −1

we have the following equations:

dn+m = 2dn+m−1 − 3gn+m−4

dn+m−1 = 2dn+m−2 − 3gn+m−5

...

dn+1 = 2dn − 2gn−3

(4.12)
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for m � 4 we also have dn = gn + 2gn−3. Consequently, we have

dn+m = gn+m + 2gn+m−3 = 2mdn − 2m+1
m−1∑
p=1

2−pgn−4+p − 3gn+m−4.

And, finally,

gn+m+3 + 2gn+m + 3gn+m−1 +
m∑

p=2

2pgn+m−p − 2mgn+3 − 2m+1gn = 0. (4.13)

This yields a denominator of the generating function g(z) equal to

(1 − 2z + 2z3 − 2z4)(2mzm − 1)

2z− 1
+ z4. (4.14)

We give some numerical computation of the algebraic entropy of the 10 first steps of
regularization m = 3n + 1:

smallest algebraic
root entropy

n = 1 z0 = 1.0000 hal = 0.0000

n = 2 z0 = 0.5979 hal = 0.5142

n = 3 z0 = 0.5889 hal = 0.5293

n = 4 z0 = 0.5858 hal = 0.5346

n = 5 z0 = 0.5844 hal = 0.5370

n = 6 z0 = 0.5836 hal = 0.5384

n = 7 z0 = 0.5832 hal = 0.5391

n = 8 z0 = 0.5829 hal = 0.5396

n = 9 z0 = 0.5827 hal = 0.5399

n = 10 z0 = 0.5826 hal = 0.5400.

(4.15)

To estimate the algebraic entropy we expand linearly the smallest root r of this polynomial
around its asymptotic value (z0 such that z0 is the smallest root of 1 − 2z0 + 2z3

0 − 2z4
0 = 0),

i.e. z0 � 0.582.

r � z0 +
z4

0(1 − 2z0)

2(2mzm0 − 1)(−1 + 3z2
0 − 4z3

0) + 2z3
0(2z0 − 1)

. (4.16)

We conclude that for λ 	= 1, hal(φλ) > 0 even when the regularization of the transformation
occurs for m > 1. This is due to the fact that a later factorization will increase the algebraic
entropy slightly. Nevertheless, some more factorizations may occur, altering the recursion
relation for gn and consequently the generating function. Some numerical studies have been
made concerning this problem for n = 2 by Viallet and Hietarinta in [16]. Using algorithms,
based on the first factorizations, we can reasonably guess the form of the generating function
to be

g(z) = 1 + 2z3 + 2z6

(1 − z)(1 − z− z2 + z3 − z4 − z5 + z6)
. (4.17)

Note that the algebraic entropy is still strictly positive.
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4.2. Computation of the invariant

In this section, we propose to construct order by order a formal series depending on variables
(x, y, t) which is invariant under φa . We will show that the series converges on an open
set of R

3. But this convergence is not a sufficient condition for global invariance under the
transformation.

As has already been seen, it is equivalent to consider the transformation

φa :




x

y

z

t


 �−→




y +
at

x

z− at

x

x

λt


 (4.18)

where a is a perturbation parameter and {x + y + z = constant} is an invariant manifold. Let
D0 be the minimal polynomial invariant under φ∗

0 : φ∗
0 (D0) = D0:

D0(x, y, z) = 1

xyz
. (4.19)

Note that at the start the choice of the initial invariant is arbitrary since any function of
D0 is also an invariant of φ0. Hence if Da is an invariant of φa , constructed from D0 by
perturbation, the arbitrariness of Da is related to that of D0. Now in homogeneous coordinates
we have

φh
a :




x

y

z

t

v


 �−→




yx + atv

zx − atv

x2

λtx

xv


 (4.20)

with

D0(x, y, z, v) = v3

xyz
.

Let suppose that Da may be expanded in terms of a: Da = ∑
n∈N

an5n with the obvious
property φh

a

∗
(Da) = Da . We will determine Dn order by order so that

φh
a

∗
( N∑

n=0

an5n

)
=

N∑
n=0

an5n + o(aN). (4.21)

We show by recursion that

D(x, y, z, t) =
∑
N∈N

aN5N(x, y, t) (4.22)

5N(x, y, t) = tN
∑

a+b+c=2N+3

δNa,b,c(λ)

xaybzc
(4.23)

|δNa,b,c(λ)| � κµN (4.24)

where δNabc(λ) depends only on λ. The summation is over integer indices. The invariant variety
is the algebraic affine set generated by D ∈ R

4 and the hyperplane {x + y + z = constant}.
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We also estimate ∀λ, ∃µ > 0 such that the coefficient δnabc(λ) � κµn, where κ is a positive
constant.

As Da(x, y, z, t) is a converging series in an open set for any a, it sufficient to choose
λ small enough so that the series still converges. Let Bλ be the open set in (x, y, z, t)-space
such that the series converges. When Bλ = R

4, the quantity D1 so constructed is clearly an
invariant.

Consider the mapping

hγ :




R
4 −→ R

4


x

y

z

t


 �−→



√
γ x

√
γ y

√
γ z

γ t


.

(4.25)

It commutes with φλ: φλ ◦ hγ = hγ ◦ φλ. Thus one can extend the domain of definition of
Bλ using hγ : ∀P ∈ R

3, ∃γ such that hγ (P ) ∈ Bλ and D ◦ φλ(hγ (P )) = D(hγ (P )) so we
have (D ◦ hγ ) ◦ φλ(P ) = D ◦ hγ (P ) and consequently D ◦ hγ is an invariant defined in the
neighbourhood of P .

Let (Di, Ui) be a pair of sets such that (Ui)i∈I is a covering by open sets which can be
contracted into Bλ, i.e.

∀i ∈ I, ∃γi such that hγi (Ui) ⊂ Bλ and Di = D ◦ hγi . (4.26)

We have just shown that it is a local invariant. Since the family of scaling transformations
((hγ )γ∈R commute with φa), one can verify that (Di)i∈I match on the overlap, i.e. ∀P ∈ R

4,
P ′ = φa(P ) and Uip as well as UiP ′ open sets of the covering such that P ∈ Uip and P ′ ∈ UiP ′ ,
we have, on the open set Uip ∩ φ−1

a (UiP ′ ) containing P , since φa is continuous:

DiP ′ = D(h−1
γiP

◦ φa ◦ hγiP ). (4.27)

Nevertheless, there is a last point to check. We should show the existence of a subspace
invariant in Bλ. In this case, the orbit of any point can be recast as curves defined in the
subspace by conjugations of h. But this is difficult to prove. Knowing that no polynomial
growth of the degree of the iterated transformation is observed for m > 1, it is quite possible
that such domains do not exist.

We conclude that the existence of a formally invariant quantity is not sufficient to prove that
the system is integrable: there must also be a reasonable domain of definition. This method,
contrary to the Newton algorithm is not designed to construct a conjugation between the initial
transformation and the perturbed one. It is mainly designed to construct the invariant of the
transformation, directly by iteration.

5. The non-autonomous discrete Painlevé transformation

In this section, we discuss the integrability, or existence of a first integral, of the projection in
the plane (x, y) of the transformation

Fε :




R
3 −→ R

3


x

y

t


 �−→



−x − y + (z + ε)/x

x

z + 2ε


. (5.1)
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Note thatFε is equivalent to the transformation: [x, y, z] �−→ [−x−y+z/x, x, z+2ε] through
the conjugation [x, y, z] �−→ [x, y, z + 2ε]. z can be thought of as a time variable and goes to
its fixed point ∞. From a physical point of view, only asymptotic solutions, with z large, are
relevant. We also observe that Fε is a left product of R

2
� R:

Fε :

[
(x, y)

z

]
�−→

[
τz(x, y)

φ(z)

]
(5.2)

with φ(z) = z + 2ε and τz(x, y) = (−x − y + (z + ε)/x). Let Pr be the projection R
3 −→ R

2

defined by (x, y, z) �−→ (x, y). It is important to note that the integrability of Pr ◦ Fε in R
2

is not equivalent to the integrability of Fε .
Thus, even if Fε is integrable we must add, to verify the integrability of the discrete

Painlevé I transformation, the following condition: C ∈ R
2 is an invariant curve of P ◦ Fε iff

∀M ∈ C ⇒ P (Orb(M)) ⊂ C.
One may view the situation as an autonomous ‘driven’ system through a coupling constant

z. Another possible interpretation is the following. Set fz: R
2 −→ R

2, [x, y] �−→
[−x − y + (z + ε)/x, x], we recall that fz = Pr ◦ Fε=0 and we see that

Pr

(
F (n)
ε

) = fz+(2n+1)ε ◦ fz+(2n−1)ε ◦ · · · ◦ fz+ε . (5.3)

So the non-autonomous dP-I dynamics is just an ordered composition of a family of similar
transformations. This point of view may look a little awkward at first, but as we shall see later
on, it will appear perfectly legitimate.

We may also view Fε as a perturbation of poles of transformation: [x, y, z] �−→
[−x − y, x, z + 2ε] where the projection in the plane (x, y) is a cyclic transformation of
the order of three.

Finally, by examining the expression of Fε we can decrease the dimensionality of the
problem by setting

x(t + 2ε) = Fε[x(t), y(t)z(t)]1

y(t + 2ε) = Fε[x(t), y(t)z(t)]2

(5.4)

where t is the time and Fε[·]i , i = 1, 2, are the first and second components. One obtains the
equation of motion: x(t)[x(t + ε) + x(t) + x(t − ε)] = t + ε. This alternative form of dP-I has
been studied extensively by Joshi [18, 19].

Inspired by works on the resolution of continuous Painlevé equations using isomonodromy
methods, she constructed an asymptotic solution for t → ∞ under the form of a formal
algebraic series:

x(t) =
∑
n∈N

ant
1
2 (1−n). (5.5)

She found that this solution diverges and that the equation has no solution in the limit t →∞.
We shall comment on this conclusion later in the paper.

This example of dP-I has the interest that it has a zero algebraic entropy. So if an invariant
exists as a conserved quantity, it must be transcendental. This example suggests that the
formulated conjecture may be extended to non-algebraic invariants. As we have already seen,
the mappings fz refer to the stopping of the Hamiltonian flow at instant 1, obtained by a
simple combination of Weierstrass functions. However, the main difficulty comes from the
change of coordinates generated by the evolution z �−→ z + 2ε, which makes the behaviour
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of the invariant of fz: 5z(x, y) = (x, y)(xy − z) unbounded. As a matter of fact one
has

f ∗
z+2ε[5z](x, y) = 5z(x, y)

(
1 − 2ε

x(x + y)

)
. (5.6)

Thus the two elliptic invariants g2 and g3 will not remain uncontrollable in the neighbourhood
of {x = 0} and {x + y = 0}.

5.1. Other obstruction to direct computation of the invariant

If one seeks to construct an invariant order by order in ε as in the non-autonomous case generated
by the multiplicative shift z �−→ λz, one meets an insurmountable problem:

(
f ∗
z − Id∗

)
is not

formally invertible in the space of rational functions of three variables:(
Id∗ − f ∗

z

) 	= ∑
n∈N

f (n)
z

∗
. (5.7)

As in the case of multiplicative perturbation (see appendix C), it is imperative to construct the
inverse of this operator. It is also difficult to prove the existence of some invariant curves using
the KAM theorem for diffeomorphisms. However, Fε has a large number of properties.

• Fε is conjugate to its inverse in C
3, i.e. F−1

ε = σ−1 ◦ Fε ◦ σ with σ a mapping of C
3:

[x, y, z] �−→ [iy, ix,−z] and σ 4 = Id. The obvious disadvantage of this conjugation
is that it is complex and consequently increases the dimensionality of the problem from
three to six.

• Fε conserves volume and orientation since det(JFε
) = 1. However, the applicability of

the KAM theorem requires exact conservation of volume [6]. The presence of the pole
1
x

is an obstruction to the application of this theorem. Exact conservation of the volume
means existence of a 2-form ω such that F ∗ω−ω = dτ , where τ is a 1-form. Formally, if
we choose ω = dx∧dy +dy∧dz, the previous equation will satisfy the previous equation
for τ = (x− ln x) dz−y dz. Such a solution reflects a singularity, due to the pole, through
the term ln x which diverges softly at x → 0. The presence of the pole does not seem to
prevent the application of the KAM theorem. Exact conservation of the volume is a global
constraint which imposes that the perturbed curve, whenever it exists, should be globally
closed to the initial curve. One should thus get a closed curve upon application of the
perturbation. This constraint helps us to control what is happening in the neighbourhood
of ∞. In the case of autonomous dP-I the curve 5z(x, y) = (x + y)(xy − z) = constant
goes through the point ∞, yielding a closed curve in the compactification of R

2 by the
projective space PR

2.

A second basic remark: in the autonomous case, the pole has no effect on the integrability.
As we have seen, f (4)

z : R
2 \ {x = 0} �−→ R

2 \ {y = 0} sends the singular line {x = 0} onto
{y = 0}, and conversely, since fz is birational. As we have seen previously, from the projective
space point of view, one can define by continuity:

f (4)
z

[
ε

y

]
=
[
y + o(ε)

−ε

]
(5.8)

and for, ε → 0, we have ∀z:

f (4)
z

[
0

y

]
=
[
y

0

]
. (5.9)
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The process, called singularity confinement, amounts to finding a power of the transformation,
here the fourth power of fz, which regularizes the behaviour of orbits in the neighbourhood of
infinity. Thus if x and y are close to each other and close to {x = 0} they keep the same order
by f 4

z , contrary to intuition. But the major feature of this crossing of ∞ is that f 4
z conserves

areas: f 4
z

∗
(dy ∧ d(−x)) = dx ∧ dy.

5.2. What happens in the non-autonomous case?

Fε sends the singular locus {x = 0} into {y = 0} and Fε can be extended by continuity to the
neighbourhood of {x = 0},

F (4)
e




ε

y

z


 =




y

1 + 3e/z
+ o(ε)

−ε

(
1 +

3e

z

)
+ o(ε2)

z + 2e


. (5.10)

By taking the limit ε → 0 we obtain

F (4)
e




0

y

z


 =




y

1 + 3e/z

0

z + 2e


. (5.11)

This justifies the duality between {x = 0} and {y = 0}. We compute the variation of the areas
of F 4

ε :

F 4
ε

∗
(dx ∧ dy) = dy

1 + 3ε/z
∧
(

1 +
3ε

z

)
d(−x) = dx ∧ dy. (5.12)

Thus two points near each other and close to the neighbourhood of the singularity remain close
to each other under the action of F (4)

ε . As in the autonomous case, the passage near infinity
is totally structured as shown by the expression of F (4)

ε (e, y, z), and F (4)
ε still conserves the

areas. We also note that in the limit z →∞ we recover the same behaviour ‘in crossing’ as in
the autonomous case.

A last point, recall that fz has torsion. Indeed, the addition τz,E on the elliptic curve
5z = E is defined by

P ′(τ, g2, g3) = E

P(τ, g2, g3) = 3z
(5.13)

with g2 = 4
3z and g3 = E2 − 8

27z
3. Thus by continuity, P ◦ τz,E sweeps a continuous interval

of values. The shift τz,E is difficult to evaluate due to the complicated inversion formula of the
Weierstass function. We recall that the transformation F0 has torsion if an infinite number of
values of τz,E exist which are badly closed to a relative integer:

∃α, ∃γ > 0 (k1, k2) ∈ Z \ {0} × Z \ {0} : |〈τz,E, k〉| � γ |k|−α (5.14)

with 〈τ, k〉 = k1 Re(τ ) + k2 Im(τ ). Consequently, among the set of curves {5z(x, y) = E},
those with this Diophantine condition are dense in R

2. These are the curves which are conserved
partially under the perturbation. Finally, all the required conditions are met to apply the KAM
theorem [6], except the exact conservation of areas which is equivalent to the control of the
lack of regularity at infinity. But the confinement of singularities helps to re-establish this
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control by imposing volume conservation when crossing to infinity. The arguments presented
here are, in fact, conditions under which the KAM theorem may be extended to birational
mappings which enjoy the property of singularity confinement. Our remark cannot replace,
however, a real proof, but it is also not a speculation since, in the autonomous case, it is the
unique reason for integrability.

Suppose now that the KAM theorem is applicable. It would follow that among the
elliptic curves {5z(x, y) = E} which are invariant under Fz, some of those which are badly
approximated by integers will survive the perturbation. Let ε be the perturbation parameter,
then Pr ◦ Fε −−→

ε→0
fz, where we recall that Pr is the (x, y) projection. Let Cε be the set of

curves which are invariant under the perturbation. In the language of the Lebesgue probability
measure, we have µ(Cε) −−→

ε→0
1. Thus as ε → 0 the curves tend to occupy the whole space

and eventually fill it completely at ε = 0−. We then get a dense union of curves 5z(x, y) = E

in the plane R
2. Moreover, consider the invertible mapping:

hε :




R
3 −→ R

3


x

y

z


 �−→



√
εx

√
εx

εz


. (5.15)

We note that ∀ε > 0, F1 and Fε are conjugate via hε in R
3. Consequently, ∀ε′ > 0 the

projectionsPr◦Fε andPr◦F ′
ε also conjugate one another. So thanks to the previous observation

∀ε > 0, Pr ◦ Fε admits a dense set of invariant curves. Extending the existence of a dense set
of invariant curves to the whole space is a non-trivial process. The argument that at any point
M there exists, due to the conservation of areas, an invariant closed curve, as close as possible
to the orbit going through M and consequently is an invariant closed curve is not valid. This
cannot be traced back to the projection Pr of the dynamics Fε in three dimensions: let M and
M ′ be such that Pr(M) = Pr(M

′) then Pr(Orb(M)) 	= Pr(orb(M ′)). The obstruction is due
to the impossibility of trapping the orbit through M by two closed curves which are arbitrarily
close to the orbit of M .

5.3. Proof that the invariant curves are non-algebraic

According to the KAM theorem, invariant curves are conjugate to initial curves. We must
prove that this conjugate curve is not algebraic. Let φ be defined by F0 = φ−1 ◦Fε ◦φ, where
F0: [x, y, z] �−→ [fz(x, y), z]. The third component is

φ[F0|x, F0|y, F0|z]z = Fε[φ|x, φ|y, φ|z]3 (5.16)

applied to the point [x, y, z]:

φ[fz(x, y), z]z = φ[x, y, z]z + 2ε. (5.17)

Now consider this equation for the set of periodic points of F0. As seen before, there exists an
infinite number of curves such that the corresponding addition τ is commensurate with the two
periods of the curve: ω1(z,5z = E) and ω2(z,5z = E), i.e. these varieties are exclusively
formed by periodic points. Let M in the plane (x, y) be such that f (n)

z (M) = M:(
φ ◦ F (n)

0 [M, z]
)

3 = φ[fz(M), z]3 = φ[M, z]3 + 2nε. (5.18)

The equality is only possible if φ[M, z]z is infinite. So φz admits an infinite number of divisors:
5z −5z(M) = (x + y)(xy − z)− (xM + yM)(xMyM − z), i.e. one for each periodic invariant
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Figure 4. Computation of the coordinates U and V for a log time scale: x = −1, y = 1, z = 1
and ε = 2.

variety for fz. Consequently, φ is not algebraic: now letB0◦F0 = E0, whereE0 = (5z, z) be
the invariant forF0 thenBε = B0◦φ−1 is the invariant forFε . ThusEε is not algebraic. In fact,
one should show that Eε generates the ideal of invariants under Fε , if 50 generates the ideal of
invariants of F0. This would mean that any invariant under Fε may be expressed in terms of Eε

and z. In other words, if we consider the mapping G : R �−→ R then (G ◦5ε) ◦Fε = G ◦5ε

so G ◦5ε is also an invariant. Hence it remains to check that ∀G : R �−→ R, G ◦ φ−1 is not
a rational mapping.

6. Asymptotic solutions in the limit z → ∞

In this section, we shall construct an asymptotic solution to the dP-I equation and discuss the
result obtained recently by Joshi. To this end, we shall consider F (4)

ε as it appears to be the
most regular power of the transformation. Numerically, it appears that the projection of the
orbits of F (4)

ε tends to the curve {5z(x, y) = 0}. More precisely depending on the initial
conditions and the value of ε the orbits under F (4)

ε may tend to:

• the line x + y = 0
• or the image of this line under fz: the hyperbola f ∗

z (x + y) = xy − z.

One observes that the larger the parameter of perturbation ε, the more rapidly the
dynamics converges: this is similar to the behaviour of forced differential systems. The
stationary solutions are reached asymptotically. Because of the periodicity 4 of the
variety {5z(x, y) = 0}, one goes by Fε from the hyperbola to the straight line and
conversely. For small ε, Pr ◦ Fε behave as fz on {5z(x, y) = 0}, as shown by successive
iterations: [

x

−x

]
−→
fz


 z

x

x


 −→

fz


 − z

x

z

x


 −→

fz


 −x

z

x


 −→

fz

[
x

−x

]
. (6.1)

Thus {5z(x, y) = 0} appears to act as an attractor. We will now study F (4)
ε x after its

transient regime, when the orbit is closed to this variety. Numerical observations suggest that
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one may consider the orthogonal coordinates: U = x + y and V = x − y. Even though U

remains bounded, V diverges when U → 0. As U and V do not decouple, a more appropriate
coordinates choice would be

U = (x + y)
√
z

V = (x − y)(x + y).
(6.2)

The graphs (ln z, U(z)) and (ln z, V (z)) (see figure 4) reveal that both U and V are periodic
in ln z and may even be trigonometric in ln z. In fact, numerical results suggest that

U(z) = A sin2 θ(z)− a

V (z) = 2B sin θ(z) cos θ(z) + b.
(6.3)

Matching zeros of U and V in the two expressions yields

a = A sin2 θ0

b = 2B sin θ0 cos θ0

(6.4)

so that

U(θ) = A sin (θ + θ0) sin (θ − θ0)

V (θ) = 2B sin (θ − θ0) cos (θ + θ0).
(6.5)

We now show that this choice of variables is compatible with the drift toward {x + y = 0}. To
that end, we will use the degeneracy of the Weierstrass function to the trigonometric function.
Using the fact that the transformation reduces to an angle addition, in the limit z → ∞, we
deduce an asymptotic expansion of the variable x(z) and y(z). For details of the proof, see
appendix D. Consequently, we obtain the expressions:

x(z) = 2
√
z cot

[
φ − 1

8 sin (θ0)
ln

z

2ε
+ θ0

]

y(z) = −2
√
z cot

[
φ − 1

8 sin (θ0)
ln

z

2ε
+ θ0

] (6.6)

where ε is the perturbation parameter and A and φ depend on initial conditions as is usual in
the resolution of differential equations: Ax,y and φx,y .

Hence in the limit z →∞, the quantity 5(x, y, z) is given by

5(x, y, z) = −4Ax,y

√
z

sin
[
φx,y − 1

8 sin (θ0(φx,y ))
ln z

2ε − θ0(φx,y)
]

sin
[
φx,y − 1

8 sin (θ0(φx,y ))
ln z

2ε + θ0(φx,y)
] . (6.7)

Consequently, 5(z) is generally speaking unbounded and it is not the working hypothesis of
Joshi in [18]. It is the case if and only if θ0 = 0 (mod π), one then recovers the autonomous
case since

ε = sin (2θ0)

A
+ o

(
1

z

)
.

This result shows that some orbits tend to the curve5 = 0, which corresponds to the degeneracy
of the Weierstrass functions into trigonometric functions. Numerical computations agree with
this behaviour. One may now raise the question: why does the system not converge towards

5

z
√
z
= ± 2

3
√

3
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for almost every z? This would correspond to another degeneracy with e2 = e3. Consider
fz = h−1√

z
◦ f1 ◦ h√z, where h√z : [x, y] �−→ [

√
zx,

√
zy]. Then the nth iterate may be

expressed as

fz+nε ◦ fz+(n−1)ε ◦ · · · ◦ fz+ε ◦ fz
= h−1√

z+nε ◦ f1 ◦ h√z+nε ◦ h−1√
z+(n−1)ε

◦ f1 ◦ · · · ◦ f1 ◦ h√z

= h−1√
z+nε ◦ f1 ◦ h√(z+nε)/(z+(n−1)ε) ◦ · · · ◦ f1 ◦ h√z. (6.8)

But when n →∞, we find

h√(z+nε)/(z+(n−1)ε) � Id + o

(
1

n

)
. (6.9)

The dynamics Fε is equivalent to the composition of f1 and a family of similar mappings hz,
z ∈ R, which tend to the identity mapping. There exists only one invariant manifold consistent
with these two families of symmetries (f1 and hz): 5 = 0. (The dynamics seeks to memorize
the constraints as in a Hamiltonian system, where the result is a geodesic which minimizes the
action and satisfies at best all the symmetries.)

We can define this asymptotic conserved quantity using coordinates U,V :

(V + ε)2 + (2U −
√
A2 − ε2)2 �

z→∞A2 (6.10)

where ε is the parameter of perturbation, A is determined by initial conditions U0, V0 such that
(V0 + ε)2 + (2U0 −

√
A2 − ε2)2 �

z→∞A2, as an integration constant. Here, necessarily |ε| � A.

Remark. The solution obtained by Joshi in [19] in the form x(t) = ∑
n∈N

ant
(1−n)/2 can

only be divergent in view of what we have obtained: the basis of solutions is too restrictive.
One should have added a harmonic decomposition basis as is suggested by our computation.
Moreover, the behaviour in ln t in the neighbourhood of infinity cannot be described by a
Laurent series since ln t is not expandable in power series. We can go back to an expansion
near zero, through the change of variable t → 1

t
.

7. Conclusion

As presented in this study, the question of integrability of the dP-I mapping (equation) is
certainly an interesting and challenging question. We have tried to give a partial answer
which, we hope should inspire more work in order to give a definite answer. We have used
all presently known techniques to deal with the problem: test of singularity confinement,
computation of algebraic entropy, study of the growth of the complexity of the factorization,
etc. . . As the invariant of the mapping in the non-autonomous case is certainly non-algebraic,
its parametrization by known elliptic functions is excluded; one might think then of a
parametrization perhaps by other transcendental functions such as Abelian functions. If this
works, applications to statistical physics may be at hand since one would have new non-
trivial models which are exactly solvable. There are topics which are not touched upon in
this paper such as the possible role of the isomonodromic deformation in the determination
of non-algebraic invariants and the connection of the spaces of initial conditions of Painlevé
equations with the blow-ups of their singularities, leading to a classification according to the
root systems of affine Weyl groups. Another direction of possible investigation would be the
complete determination of asymptotic solutions of this equation under an explicit form which
is workable for physical problems as well as its relations to other types of nonlinear discrete
equations.
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Appendix A. Algebraic geometry

A.1. Some topics on Zariski topology

Consider the affine space K
n and the trivial ideals generated by elements 1 and 0, respectively,

we have clearly V ({1}) = ∅ and V ({0}) = ∅. Hence the empty set and the whole space are
algebraic affines sets. Let (Si)i∈I be a family of subsets of K

n. From the definition of algebraic
sets we have ⋂

i∈I
V (〈Si〉) = V

(〈⋂
i∈I

Si

〉)
(A.1)

〈S〉 denotes the ideal generated by S. Let I and J be two ideals. We have IJ ⊂ I,J hence
V (I) ∩ V (J ) ⊂ V (IJ ). Conversely, let x ∈ V (IJ ) and suppose that x /∈ V (I). There
exists P ∈ I such that P(x) 	= 0. Then if Q ∈ J and Q(x) = 0 one has PQ ∈ IJ and
consequently (PQ)(x) = 0. A similar reasoning shows that

V (I) ∪ V (J ) = V (I ∩ J ). (A.2)

Thus the finite union of algebraic sets is an algebraic set. This completes the verification
that these sets are closed sets for Zariski topology. This topology is intuitively very different
from usual topologies: open sets are very ‘large’ so that two open sets in K

n always have a
non-empty intersection.

A.2 Morphisms of algebraic sets

After giving the definition of objects in algebraic geometry, it remains to define mappings
for these objects to turn them into categories, the morphisms. Let X be an affine variety of
dimension n and let R ∈ X. A mapping f : X → K is said to be regular in R if there exists
an open set U ∈ K

n, a neighbourhood of x and two polynomials P and Q of K[X1, . . . , xn]
such that Q(R) 	= 0 and ∀S ∈ U , f (S) = P(S)/Q(S). f is said to be regular on X if it is
regular at all points of X.

Thus 2 : X → Y is a morphism of algebraic varieties if 2 is continuous on X and if
∀U ⊂ Y is an open set of Y, and f is a regular map on U , f ◦ 2 is regular on 2−1(U). We
shall denote by 2∗(f ), the image of f by the morphism 2. This equivalence relation yields
a coherent definition by ‘pasting’.

Let (U,2) be a pair formed by an open set U of X and 2 a morphism of U in Y (U → Y ).
Consider the following equivalence relation defined by (U,2) ∼ (V ,J) if 2|U∩V = J|V∩U .
We define a rational mapping X → Y as an equivalence class by this relation. The mapping
is called birational if there also exists a local rational inverse mapping. A rational function
X → K is simply a fraction defined over the whole space. We observe that in projective spaces,
rational functions are necessarily constants. Thus it is important to have a local definition for
this type of object.
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Appendix B. Details of the dP-I parametrization by Weierstrass elliptic functions

B.1. Parametrization

Let t be such that

(x + y − b) = e

t

(xy − 3c) = t

(B.1)

and consider x and y as roots of a second-order equation:

X2 −
(
b +

e

t

)
X + (3c + t) = 0. (B.2)

Then the solution is

(x, y) = 1

2t

[
(e + bt)±

√
(e + bt)2 − 4t2(t + 3c)

]
(B.3)

where the discriminant is a polynomial of the order of three in t . This polynomial may be
parametrized naturally in terms of Weierstrass elliptic functions. Call δ the quantity

δ = (e + bt)2 − 4t2(t + 3c). (B.4)

We perform a translation t = z + α in δ and choose α in such a way as to have

δ = −4z3 + g2z + g3. (B.5)

This is possible if α = ( 1
12b

2 − c). Then we have as elliptic Weierstrass invariants:

g2 = 12
(

1
12b

2 − c
)2

+ 2eb

g3 = −e2 − 8
(

1
12b

2 − c
)3 − 2eb

(
1

12b
2 − c

) (B.6)

for the P(ξ ; g2, g3) function. If one sets −z = P(ξ ; g2, g3), then δ = P ′(ξ ; g2, g3).
Consequently, the elliptic curve has the parametric representation

x(ξ) = e + b( 1
12b

2 − c)− bP(ξ ; g2, g3)− P ′(ξ ; g2, g3)

2
(

1
12b

2 − e − P(ξ ; g2, g3)
)

y(ξ) = e + b( 1
12b

2 − c)− bP(ξ ; g2, g3) + P ′(ξ ; g2, g3)

2
(

1
12b

2 − e − P(ξ ; g2, g3)
) .

(B.7)

Now define v such that P(v; g2, g3) = ( 1
12b

2 − c). We may then compute the value of the
derivative of P(ξ ; g2, g3) at ξ = v:

P ′(ξ ; g2, g3) =
√

4P(ξ ; g2, g3)3 − g2P(ξ ; g2, g3)− g3 = e. (B.8)

Thus we end up with

g2 = 12P(v; g2, g3)
2 + 2bP ′(v; g2, g3)

g3 = −P ′(v; g2, g3)
2 − 8P(v; g2, g3)

3 − 2bP ′(v; g2, g3) P(v; g2, g3)}
(B.9)

and finally we obtain

x(ξ) = 1

2

(
b +

P ′(v; g2, g3)− P ′(ξ ; g2, g3)

P(v; g2, g3)− P(ξ ; g2, g3)

)

y(ξ) = 1

2

(
b +

P ′(v; g2, g3) + P ′(ξ ; g2, g3)

P(v; g2, g3)− P(ξ ; g2, g3)

)
.

(B.10)
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B.2. Some properties of this parametrization

x(ξ) and y(ξ) may be expressed in terms of the Weierstrass ς(x)-function. We make use of
the formula

x(ξ) = 1
2b + ς(ξ + v)− ς(ξ)− ς(v)

y(ξ) = 1
2b + ς(−ξ + v) + ς(ξ)− ς(v).

(B.11)

We shall prove (in several steps) that

y(ξ + v) = x(ξ). (B.12)

For simplicity, from now we denote P(u) for P(u; g2, g3) and P ′(u) for P ′(u; g2, g3).

Step 1. From the parametric representation we compute the sum of x(ξ) and y(ξ):

x(ξ) + y(ξ) = b +
P ′(ξ)

P(v)− P(ξ)
. (B.13)

Hence

x(ξ + v) + y(ξ + v) = b +
P ′(ξ)

P(v)− P(ξ + v)
(B.14)

Since y(ξ + v) = x(ξ):

x(ξ + v) = −x(ξ) + b +
P ′(ξ)

P(v)− P(ξ + v)
. (B.15)

Step 2. Computation of P(v)− P(ξ + v) using the addition formula for the P(z) function:

P(ξ + v) = −P(ξ)− P(v) +
1

4

(P ′(ξ)− P ′(ξ)
P(ξ)− P(v)

)2

= −P(ξ)− P(v) +
(
x(ξ)− 1

2b
)2
. (B.16)

Thus we can obtain

P(v)− P(ξ + v) = P(ξ) + 2P(v)− (
x(ξ)− 1

2b
)2
. (B.17)

Step 3. We must now compute P(ξ) + 2P(v). To this end we form the product

x(ξ)y(ξ) = 1

4

[
b +

P ′(v)− P ′(ξ)
P(v)− P ′(ξ)

] [
b +

P ′(v) + P ′(ξ)
P(v)− P(ξ)

]

= 1

4
b2 +

1

2
b

P ′(ξ)
P(v)− P(ξ)

+
1

4

P ′(ξ)2 − P ′(ξ)
(P(v)− P(ξ))2

. (B.18)

The squares of the derivatives of the P(ξ) functions may be replaced by polynomials of third
order in P(ξ), and making use of the expression of g2 in terms of P ′(ξ) and of P(v) we have

1

4

P ′(v)2 − P ′(ξ)
(P(v)− P(ξ))2

= −1

2
b

P ′(v)
P(v)− P(ξ)

− P(ξ)− 2P(v). (B.19)

Hence

x(ξ)y(ξ) = 1
4b

2 − P(ξ)− 2P(v). (B.20)

Consequently

P(v)− P(ξ + v) = −x(ξ)(x(ξ) + y(ξ)− b) (B.21)
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and going back to step 1,

x(ξ + v) = −x(ξ) + b +
P ′(v)

−x(ξ)(x(ξ) + y(ξ)− b)
. (B.22)

But since the sum x(ξ) + y(ξ) is known from the parametric representation we have

x(ξ + v) = −x(ξ) + b +
P(v)− P(ξ)

−x(ξ)
. (B.23)

We may now use the expression of P(ξ) obtained in step 3 in the previous formula and obtained,
after simplification, the result

x(ξ + v) = −x(ξ)− y(ξ) + b +
3c

x(ξ)
(B.24)

where we have replaced 1
4b

2 − 3P(v) by 3c. Hence the expected result.

Appendix C. Invariant of the multiplicative perturbation of dP-I: details of the
computation

Let us suppose that Da may be expanded in terms of a: Da =
∑

n∈N
an5n with the obvious

property φh
a

∗
(Da) = Da . We will determine Dn order by order so that

φh
a

∗
(

N∑
n=0

an5n

)
=

N∑
n=0

an5n + o(aN). (C.1)

Using the recursion hypothesis we have

φh
a

∗
(
N−1∑
n=0

an5n

)
=

N−1∑
n=0

an5n + aNPN + o(aN+1). (C.2)

We compute the nth derivative of the left-hand side of the previous equation at α = 0

PN = ∂N

∂aN

(
N−1∑
n=0

anφh
a

∗
(5n)

)
a=0

. (C.3)

Knowing 50, . . . , 5N−1, we obtain DN as

φh
a

∗
(
N−1∑
n=0

an5n

)
=

N−1∑
n=0

an5n + aN5N + o(aN+1)

aN [φh
a

∗
(5N)−5N ] = −aNPN + o(aN+1).

(C.4)

Hence for a → 0 we obtain

φh
0
∗
(5N)−5N = −PN. (C.5)

To obtain 5N one must invert the operator (φh
0 − Id)∗. This is possible for |λ| < 1 (outside

its kernel). The inverse is then given by the series

(φh
0 − Id)∗(−1) =

∑
k∈N

(φ
h(k)
0 )∗. (C.6)
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This yields after simplification

PN =
N∑
k=1

1

k!

∂k

∂ak

(
φh
a

∗
(5N−k)

)
a=0

. (C.7)

Since the perturbation is linear,

φa = φ0 + a

(
∂φa

∂a

)
a=0

and since for the three last components of the transformation φa we also have

∂

∂a
P3 ◦ φa = ∂

∂a
P4 ◦ φa = ∂

∂a
P5 ◦ φa = 0.

Finally, we obtain

PN =
N∑
k=1

k∑
p=0

(−1)k−p

p!(k − p)!
tkvk

∂k

∂xp∂yk−p

(
φ∗

0 (5N−k)
)
. (C.8)

We now show by recursion that

5N(x, y, z, t, v) = vN tN+3
∑

a+b+c=2N+3

δNabc(λ)

xaybzc
(C.9)

where δNabc(λ) depends only on λ, let us calculate

∂k

∂xp∂yk−p
5N−k = tN−kvN−k+3

×
∑

a+b+c=2(N−k)+3

δN−k
abc (λ)

xc+kya+p+k−pzc
(−1)k

(a + p − 1)!(b + k − p − 1)!

(a − 1)!(b − 1)!
. (C.10)

Letting φ∗
0 operate on this equation, we have

∂k

∂xp∂yk−p
φ∗

0 (5N−k) = λN−ktN−kvN−k+3(−1)kp!(k − p)!Cp

a+p−1C
b−p

b+k−p−1

×
∑

a+b+c=2(N−k)+3

δN−k
abc (λ)

xc+kya+pzb+k−p
. (C.11)

Now defining new indices:

a′ = c + k

b′ = a + p

c′ = b + k − p.

(C.12)

Note that a′ + b′ + c′ = 2N + 3, we obtain

PN =
N∑
k=1

k∑
p=0

(−1)pλN tNvN+3C
b′−p−1
c′−1 C

c′−k+p−1
c′−1

δN−k
b′−p,c′−k−p,a′−k(λ)

xa
′
yb

′
cc

′ . (C.13)

To compute 5N we let (φa − Id)∗(−1) act on PN . But before doing so, we note the sequence

tNvN−k

xa
′
yb

′
zc

′ −→
φ∗

0

λN
tNvN−k

xc
′
ya

′
zb

′ −→
φ∗

0

λ2N tNvN−k

xb
′
yc

′
za

′ −→
φ∗

0

λ3N tNvN−k

xa
′
yb

′
zc

′ −→
φ∗

0

. . . . (C.14)
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We thus obtain DN as

5N(x, y, z, t, v) = tNvN+3
∑

a′+b′+c′=2N+3

N∑
k=0

k∑
p=0

(−1)pλN−k

1 − λ3N

1

xa
′
yb

′
zc

′

×[Cb′−p−1
b′−1 C

c′−k+p−1
c′−1 δN−k

b′−p,c′−p−k,a′−k(λ)

+λNCc′−p−1
c′−1 C

a′−k+p−1
a′−1 δN−k

c′−p,a′−p−k,b′−k(λ)

+λ2NC
a′−p−1
a′−1 C

b′−k+p−1
b′−1 δN−k

a′−p,b′−p−k,c′−k(λ)
]
. (C.15)

δNa′,b′,c′(λ) fulfils the recursion relation:

δNa′,b′,c′(λ) =
N∑
k=0

k∑
p=0

(−1)pλN−k

1 − λ3N

[
C

b′−p−1
b′−1 C

c′−k+p−1
c′−1 δN−k

b′−p,c′−p−k,a′−k(λ)

+λNCc′−p−1
c′−1 C

a′−k+p−1
a′−1 δN−k

c′−p,a′−p−k,b′−k(λ)

+λ2NC
a′−p−1
a′−1 C

b′−k+p−1
b′−1 δN−k

a′−p,b′−p−k,c′−k(λ)
]
. (C.16)

We now show that 5N so constructed makes sense, i.e. the series
∑

n∈N
an5n is a

converging series. Suppose that ∃c > 0, ∃µ > 0, ∃N0, ∀N , ∀a, b, c, ∀N > N0:

|δNa,b,c(λ)| < cµN (C.17)

|δNa,b,c(λ)| � |1 + λN + λ2N |
|1 − λ3N |

N∑
k=0

k∑
p=0

C
2(N−2)+p−k

2(N−2) C
2(N−2)−p

2(N−2) |λµ|N−kc

� c
|1 + λN + λ2N |
|1 − λ3N | |λµ|N

∞∑
p=0

∞∑
q=0

C
2(N−2)−p

2(N−2) C
2(N−2)−q

2(N−2) |λµ|−(p+q). (C.18)

We set q = k−p. Since we know that Ck
N = 0 for k < 0 and using its integral representation,

we have

|δNa,b,c(λ)| � BN

∞∑
p=0

∞∑
q=0

1

(2π i)2

∮
C(0, 1

2 )

∮
C(0, 1

2 )

(1 + w)2(n−2)w−2(N−2)−1+2p

×(1 + z)2(n−2)z−2(N−2)−1+2p|λµ|−(p+q) dz dw (C.19)

where

BN = c|λµ|N |1 + λN + λ2N |
|1 − λ3N | .

Note that BN has a denumerable set of singularities, which is dense on the unit circle in λ.
After rearrangement

|δNa,b,c(λ)| � BN

[ ∞∑
p=0

1

(2π i)2

∮
C(0, 1

2 )

(
1 + z

z

)2(n−2) (
z2

|λµ|
)p

dz

z

]2

(C.20)

exchanging integration and summation since the series converges, we obtain

|δNa,b,c(λ)| � BN

[(
1 +

√|λµ|√|λµ|
)2(N−2)

−
(

1 −√|λµ|√|λµ|
)2(N−2)

]2

. (C.21)
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We can verify that for any N and |λ| > 1, there exist no solutions µ such that(
1 +

√|λµ|√|λµ|
)2N

−
(

1 −√|λµ|√|λµ|
)2N

< 2

√
|1 − λN+2|
|λN+2| . (C.22)

The right-hand side of this expression grows exponentially for µ > 0 even though the
other side is bounded by 2 for |λ| > 1. On the other hand, ∀|λ| < 1 you can choose µ

independent of N when this one is large enough. In fact, as( |1 −√
µλ|

|1 +
√
µλ|

)
< 1

one may verify that the above expression allows the choice of a lower bound for µ for large
N :

µ � 1

|λ|1/2|1 − λ1/4|2 . (C.23)

We have thus constructed a converging solution in the complement of a neighbourhood of 0.
In fact, for v = 1 (i.e. back to a non-homogeneous version), we recall that ∀λ, ∃µ > 0

Da(x, y, z, t) =
∑
N∈N

aN5N(x, y, z, t)

5N(x, y, z, t) = tN
∑

a+b+c=2N+3

δNa,b,c(λ)

xaybzc

|δNa,b,c(λ)| � κµN

(C.24)

where κ is a positive constant. Thus we have

|Da(x, y, z, t)| � c
∑
N∈N

µN |at |N
∑

a+b+c=2N+3

1

|xaybzc| . (C.25)

In the φλ-invariant manifold {x + y + z = e} where e is a constant. We shall prove that

D(x, y, t) =
∑
N∈N

aN5N(x, y, t)

5N(x, y, t) = tN
∑

a+b+c=2N+3

δNa,b,c(λ)

xayb(e − x − y)c

|δNa,b,c(λ)| � κµN.

(C.26)

Appendix D. Asymptotic behaviour (z → ∞) of the variables x(z) and y(z)

Recall that this change of coordinates is invertible:

x(θ) = 1

2

[
U(θ)√

z
+
√
z
V (θ)

U(θ)

]

y(θ) = 1

2

[
U(θ)√

z
−√

z
V (θ)

U(θ)

]
.

(D.1)

Hence it follows that

xy = 1

4

[
U 2

z
− z

V 2

U 2

]
= 1

z

[
A sin (θ − θ0) sin (θ + θ0)

2

]2

− z

[
B cos (θ + θ0)

A sin (θ + θ0)

]2

. (D.2)
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Thus

5z(x, y) = (x + y)(xy − z) = A sin (θ − θ0) sin (θ + θ0)√
z

×
[

1

2

(
A sin (θ − θ0) sin (θ + θ0)

z

)2

− z

(
1 +

(
B cos (θ + θ0)

A sin (θ + θ0)

)2
)]

. (D.3)

Recall that the invariants g2 and g3 of the Weierstrass function are given by g2 = 4
3z

2,
g3 = 8

27z
3 −52. To order 1

z
, as z →∞, one obtains

3g3

2g2
= z

3
− 1

2

(
35

2z

)2

= z

3
− A2 9 sin2 (θ − θ0)

8 sin2 (θ + θ0)

[
sin2 (θ + θ0)− B

A
cos2 (θ + θ0)

]4

+ o

(
1

z

)
.

(D.4)

In the autonomous case used we have the parametrization

x = 1

2

(
5− P ′(u)
z/3 + P(u)

)

y = 1

2

(
5 + P ′(u)
z/3 + P(u)

) (D.5)

or conversely,

P(u) = 2z

3
− xy = 2z

3
+ z

(
B cos (θ + θ0)

A sin (θ + θ0)

)2

− (A sin (θ + θ0) sin (θ − θ0))
2

z3
. (D.6)

Here the Weierstrass P function is, to a first approximation, equal to

P(u|g2, g3) = −3g3

2g2

(
1 − 3

φ(u)

)
(D.7)

with

φ(u) = sin2

√
3g3

2g2

since this is one of the cases of degenerate behaviour where one of the periods goes to infinity,
i.e. 5 = 0. The identification of these two expressions of P(u) yields

1

φ
=
(

2

3
z− xy +

3g3

2g2

)
2g2

3g3
(D.8)

but explicit computations of the right-hand side of this expression give

1

φ
= z

[
1 +

(
B cos (θ + θ0)

A sin (θ + θ0)

)2
]
− A2

4z
sin2 (θ + θ0) sin2 (θ − θ0)

−9A2

8z

sin2 (θ − θ0)

sin2 (θ + θ0)

(
sin2 (θ + θ0) +

B2

A2
cos2 (θ + θ0)

)
+ o

(
1

z

)
(D.9)

we obtain

2 = sin2 (θ + θ0)

1 +
(
B2/A2 − 1

)
cos2 (θ + θ0)

. (D.10)
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As in the theory of differential equations, we proceed with the method of variation of the
constant. We may suppose that A/B depends on z such that

2 = sin2 (θ + θ0)

1 +
[
(A(z)/B(z))2 − 1

]
cos2 (θ + θ0)

+ o

(
1

z

)
. (D.11)

The plot of the quantity A(z)

B(z)
as a function of z reveals that

lim
z→∞

(
A(z)

B(z)

)3

= lim
z→∞ 4

(
U(z)

V (z)

)2 ( 1

2(z)
− 1

)
= 1. (D.12)

This is consistent with the degeneracy of P(u|g2, g3). Another degeneracy occurs when two
other roots of P(u|g2, g3) are equal. This situation may be obtained by application of F ∗

ε .
We shall show that limz→∞ A(z)

B(z)
= 1, and the temporal dependence is in ln z.

To this end, note that F (2)
ε is a rotation of angle π

2 + α(z) such that α(z) # π
2 mod 2π .

From the parity of 2 we deduce that F (4)
ε is a rotation of angle α(z) + α(z + 2ε). Hence using

the expression of U and V we have

F (2)∗(U(θ)) = A(z + 2ε) cos (θ + θ0 + α(z)) cos (θ − θ0 + α(z))

F (2)∗(V (θ)) = −2B(z + 2ε) cos (θ + θ0 + α(z)) sin (θ − θ0 + α(z)).
(D.13)

But as one has the sequence




x

y

z


 −−→

F (2)




y − 2

x
− x(z + ε)

x(x + y)− z

−x − y +
z

x

z + 2ε


 (D.14)

we obtain

F (2)∗(y) = −x − y +
z

x

F (2)∗(x + y)) = −x(x(x + y) + ε)

x(x + y)− (z + ε)
.

(D.15)

Plugging back into the initial expressions we obtain two equations:

Equation I:

B
√
z + 2ε

A
tan (θ + θ0 + α) +

A

2
√
z + 2ε

cos (θ + θ0 + α) cos (θ − θ0 + α)

= − A√
z

sin (θ + θ0)

×
[

sin (θ − θ0)− 2z2

A2 sin2 (θ + θ0) sin (θ − θ0) + 2Bz cos (θ + θ0)

]
. (D.16)

Equation II:

A√
(z + 2ε)

cos (θ + θ0 + α) cos (θ − θ0 + α)
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= −A2 sin2 (θ + θ0) sin (θ − θ0) + 2Bz cos (θ + θ0)

2A
√
z sin (θ + θ0)

×
[

1 +
2z(z + ε)

A2 sin2 (θ + θ0) sin (θ − θ0) + 2Bz sin (θ + θ0) cos (θ + θ0)− 2z2

]
.

(D.17)

Performing the product of the two equations, we find

A√
(z + 2ε)

cos (θ + θ0 + α) cos (θ − θ0 + α)

×
[

A√
(z + 2ε)

cos (θ + θ0 + α) cos (θ − θ0 + α) + B

√
z + 2ε

A

sin (θ + θ0 + α)

cos (θ + θ0 + α)

]

= 1

2z

[
A2 sin2 (θ + θ0) sin2 (θ − θ0) + 2Bz sin (θ − θ0) cos (θ + θ0) + 2εz

]
.

(D.18)

Assuming that B is a constant to order o
(

1
z

)
we set

u = z

B

g = ε

B

r =
(
B

A

)2

(D.19)

and feed back to this order into equations I and II. They become to order o
(

1
z

)
.

Equation I:

r(u + 2g) tan (θ + θ0 + α) + 1
2 cos (θ + θ0 + α) cos (θ − θ0 + α) = −

√
u + 2g

u
sin (θ + θ0)

×
[

sin (θ − θ0)− 2ru2

sin2 (θ + θ0) sin2 (θ − θ0) + 2ru cos (θ + θ0)

]
. (D.20)

Equation II:

cos (θ + θ0 + α) cos (θ − θ0 + α)− 2r(u + 2g) sin (θ + θ0 + α) cos (θ − θ0 + α)

=
√
u + 2g

u

[
sin2 (θ + θ0) sin2 (θ − θ0) + 2ru sin (θ − θ0) cos (θ + θ0) + 2gru

]
.

(D.21)

Identification will yield relations between g, θ0, α and r for any θ . Expanding and
regrouping according to powers of u we have the following.

Equation I:

u2[4r2 cos (θ + θ0) sin (θ + θ0 + α)− 4r cos (θ + θ0 + α) sin (θ + θ0)]

+u[2r cos (θ + θ0) cos2 (θ + θ0 + α) cos (θ − θ0 + α)

+2r sin2 (θ + θ0) sin (θ − θ0) sin (θ + θ0 + α)
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+8gr2 cos (θ + θ0) sin (θ + θ0 + α)

+4r cos (θ + θ0) cos (θ + θ0 + α) sin (θ + θ0) sin (θ − θ0)

−4gr cos (θ + θ0 + α) sin (θ + θ0)]

+u0[sin2 (θ + θ0) sin (θ − θ0) cos (θ + θ0 + α) cos (θ − θ0 + α)

+4gr sin2 (θ + θ0) sin (θ − θ0) sin (θ + θ0 + α)

+2 sin2 (θ + θ0) sin2 (θ − θ0) cos (θ + θ0 + α)

−4gr cos (θ + θ0) sin (θ + θ0) sin (θ − θ0) cos (θ + θ0 + α)

+4g2r cos (θ + θ0 + α) sin (θ + θ0)] + o

(
1

u

)
= 0. (D.22)

Equation II:

u2[g + sin (θ − θ0) cos (θ + θ0)− sin (θ + θ0 + α) cos (θ − θ0 + α)]

+u[sin2 (θ + θ0) sin2 (θ − θ0)− cos2 (θ + θ0 + α) cos2 (θ − θ0 + α)

+4gr(g + sin (θ − θ0) cos (θ + θ0)− sin (θ + θ0 + α) cos (θ + θ0 + α)]

+u0[2g sin2 (θ − θ0) sin2 (θ − θ0)] + o

(
1

u

)
= 0. (D.23)

Cancellation to order u2 gives the conditions

r cos (θ + θ0) sin (θ + θ0 + α) = cos (θ + θ0 + α) sin (θ + θ0)

g + sin (θ − θ0) cos (θ + θ0) = sin (θ + θ0 + α) cos (θ − θ0 + α).
(D.24)

If r , α, g are to be independent of θ one must choose

r = 1

α = 0

g = 2 sin (θ0).

(D.25)

We proceed to the next order by setting

r = 1 +
a

u

α = b

u

g = 2 sin (θ0) +
c

u

(D.26)

where a, b, c are parameters to be determined. Feeding this new input into the equations and
expanding them from order u2 to u−1, we obtain after expansion of trigonometric functions
and simplifications:

Equation I:

2[2b + cos (2θ0)] + sin 2(θ + θ0)[2a + cos (2θ0)] = 0. (D.27)
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Equation II:

c + [2b + cos (2θ0)] = 0. (D.28)

The simultaneous solutions to the two necessary conditions are obviously

a = − sin (2θ0)

2

b = −cos (2θ0)

2

c = 0.

(D.29)

To sum up, we have obtained

r = 1 − sin (2θ0)

2u
+ o

(
1

u2

)

α = −cos (2θ0)

2u
+ o

(
1

u2

)

g = sin (2θ0) + o

(
1

u2

)
.

(D.30)

This solution is surprising since the system of equations is overdetermined with respect to the
number of variables. Such a situation usually arises in integrable systems and one might state
that the system under study may be integrable. With these expressions, one may show that
r → 1 as z → ∞ and U,V depend on ln z. The previous expansion may also be extended to
higher orders in

(
1
u

)
. For the sake of consistency we shall use an expansion of the Weierstrass-P

function. Recall that [4]

P(u|g2, g3) = e3 +
e1 − e3

sn2(u
√
e1 − e3, k)

(D.31)

where e1, e2 and e3 are roots of 4x3 − g2x − g3 = 0, and sn(u, k) is the Jacobian elliptic sine
function of modulus

k2 = e2 − e3

e1 − e3
.

Moreover, one has the following expansion of the inverse of sin2(u, k):

1

sn2(u, k)
=
(

π

2K

)2 1

sin2 (uπ/2K)
+
K − E

K
− 2π2

K2

∞∑
n=1

nq2n

1 − q2n
cos

(
nπ

K
u

)
. (D.32)

Here K and E are complete elliptic integrals4.
Now since

α = −cos (2θ0)

2u
+ o

(
1

u2

)

4 K = K(k) = π
2

∑∞
n=0 k

2n
(
(2n−1)!!

2nn

)2

E = E(k) = π
2

[
1 −∑∞

n=0 k
2n
(
(2n−1)!!

2nn

)2
]

q = e
−π

K(k)

K(k′) with k2 + k′2 = 1.
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then∑
z �−→z+2ε

α(u(z)) =
u∑

u �−→u+2g

−cos (2θ0)

2u
� φ − cos (2θ0)

4g
ln

u

2g
+ o

(
1

u

)

� φ − 1

8 sin (θ0)
ln

z

2ε
+ o

(
1

z

)
(D.33)

where φ is a constant.
Thus in the limit z → ∞, one obtains the asymptotic expression of U and V , and the

equivalent ones for x and y, assuming that we can express θ0 as a function of φ and depending
on the initial conditions:

U(z) = A sin

[
φ − 1

8 sin (θ0)
ln

z

2ε
+ θ0

]
sin

[
φ − 1

8 sin (θ0)
ln

z

2ε
− θ0

]

V (z) = 2A cos

[
φ − 1

8 sin (θ0)
ln

z

2ε
+ θ0

]
sin

[
φ − 1

8 sin (θ0)
ln

z

2ε
− θ0

]

x(z) = 2
√
z cot

[
φ − 1

8 sin (θ0)
ln

z

2ε
+ θ0

]

y(z) = −2
√
z cot

[
φ − 1

8 sin (θ0)
ln

z

2ε
+ θ0

]
(D.34)

where A and φ depend on initial conditions as it is usual in the resolution of differential
equations: Ax,y and φx,y .
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Nonlinearity 13 889–905

[2] Arnol’d V I 1990 Dynamics of complexity of intersections Bol. Soc. Bras. Mat. 21 1–10
[3] Bellon M P and Viallet C-M 1999 Algebraic entropy Commun. Math. Phys. 204 425–37
[4] Bessis D, Itzykson C and Zuber J B 1980 Quantum field theory in graphical enumeration Adv. Appl. Math. 1

109–57
[5] Boukraa S, Maillard J-M and Rollet G 1994 Integrable mappings and polynomial growth Physica A 209 162–222
[6] Broer H W, Huitema G B and Sevryuk M B 1996 Quasi-Periodic Motions in Families of Dynamical Systems

(Lectures Notes in Mathematics vol 1645) (Berlin: Springer)
[7] Conte R and Musette M 1998 Rules of Discretization for Painlevé Equations in Theory of Nonlinear Special
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